3.3.83 \(\int (c x)^{7/2} (\frac {a}{x^3}+b x^n)^{3/2} \, dx\)

Optimal. Leaf size=122 \[ -\frac {2 a^{3/2} c^4 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{(n+3) \sqrt {c x}}+\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{n+3}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (n+3)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2028, 2031, 2029, 206} \begin {gather*} -\frac {2 a^{3/2} c^4 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{(n+3) \sqrt {c x}}+\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{n+3}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (n+3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*x)^(7/2)*(a/x^3 + b*x^n)^(3/2),x]

[Out]

(2*a*c^2*(c*x)^(3/2)*Sqrt[a/x^3 + b*x^n])/(3 + n) + (2*(c*x)^(9/2)*(a/x^3 + b*x^n)^(3/2))/(3*c*(3 + n)) - (2*a
^(3/2)*c^4*Sqrt[x]*ArcTanh[Sqrt[a]/(x^(3/2)*Sqrt[a/x^3 + b*x^n])])/((3 + n)*Sqrt[c*x])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2028

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*p*(n - j)), x] + Dist[a/c^j, Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c,
j, m, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2029

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rule 2031

Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracPar
t[m])/x^FracPart[m], Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && IntegerQ[p + 1/2]
 && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0]

Rubi steps

\begin {align*} \int (c x)^{7/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2} \, dx &=\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (3+n)}+\left (a c^3\right ) \int \sqrt {c x} \sqrt {\frac {a}{x^3}+b x^n} \, dx\\ &=\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{3+n}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (3+n)}+\left (a^2 c^6\right ) \int \frac {1}{(c x)^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \, dx\\ &=\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{3+n}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (3+n)}+\frac {\left (a^2 c^4 \sqrt {x}\right ) \int \frac {1}{x^{5/2} \sqrt {\frac {a}{x^3}+b x^n}} \, dx}{\sqrt {c x}}\\ &=\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{3+n}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (3+n)}-\frac {\left (2 a^2 c^4 \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {1}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{(3+n) \sqrt {c x}}\\ &=\frac {2 a c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}{3+n}+\frac {2 (c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2}}{3 c (3+n)}-\frac {2 a^{3/2} c^4 \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {a}}{x^{3/2} \sqrt {\frac {a}{x^3}+b x^n}}\right )}{(3+n) \sqrt {c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 100, normalized size = 0.82 \begin {gather*} \frac {2 c^2 (c x)^{3/2} \sqrt {\frac {a}{x^3}+b x^n} \left (\sqrt {a+b x^{n+3}} \left (4 a+b x^{n+3}\right )-3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+3}}}{\sqrt {a}}\right )\right )}{3 (n+3) \sqrt {a+b x^{n+3}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(7/2)*(a/x^3 + b*x^n)^(3/2),x]

[Out]

(2*c^2*(c*x)^(3/2)*Sqrt[a/x^3 + b*x^n]*(Sqrt[a + b*x^(3 + n)]*(4*a + b*x^(3 + n)) - 3*a^(3/2)*ArcTanh[Sqrt[a +
 b*x^(3 + n)]/Sqrt[a]]))/(3*(3 + n)*Sqrt[a + b*x^(3 + n)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.69, size = 123, normalized size = 1.01 \begin {gather*} \frac {(c x)^{9/2} \left (\frac {a}{x^3}+b x^n\right )^{3/2} \left (\frac {2 c^{7/2} \left (\left (a+b x^{n+3}\right )^{3/2}+3 a \sqrt {a+b x^{n+3}}\right )}{3 (n+3)}-\frac {2 a^{3/2} c^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a+b x^{n+3}}}{\sqrt {a}}\right )}{n+3}\right )}{c^{9/2} \left (a+b x^{n+3}\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(c*x)^(7/2)*(a/x^3 + b*x^n)^(3/2),x]

[Out]

((c*x)^(9/2)*(a/x^3 + b*x^n)^(3/2)*((2*c^(7/2)*(3*a*Sqrt[a + b*x^(3 + n)] + (a + b*x^(3 + n))^(3/2)))/(3*(3 +
n)) - (2*a^(3/2)*c^(7/2)*ArcTanh[Sqrt[a + b*x^(3 + n)]/Sqrt[a]])/(3 + n)))/(c^(9/2)*(a + b*x^(3 + n))^(3/2))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(7/2)*(a/x^3+b*x^n)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (b x^{n} + \frac {a}{x^{3}}\right )}^{\frac {3}{2}} \left (c x\right )^{\frac {7}{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(7/2)*(a/x^3+b*x^n)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^n + a/x^3)^(3/2)*(c*x)^(7/2), x)

________________________________________________________________________________________

maple [F]  time = 0.71, size = 0, normalized size = 0.00 \begin {gather*} \int \left (c x \right )^{\frac {7}{2}} \left (b \,x^{n}+\frac {a}{x^{3}}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(7/2)*(b*x^n+a/x^3)^(3/2),x)

[Out]

int((c*x)^(7/2)*(b*x^n+a/x^3)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (b x^{n} + \frac {a}{x^{3}}\right )}^{\frac {3}{2}} \left (c x\right )^{\frac {7}{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(7/2)*(a/x^3+b*x^n)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^n + a/x^3)^(3/2)*(c*x)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (c\,x\right )}^{7/2}\,{\left (b\,x^n+\frac {a}{x^3}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(7/2)*(b*x^n + a/x^3)^(3/2),x)

[Out]

int((c*x)^(7/2)*(b*x^n + a/x^3)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(7/2)*(a/x**3+b*x**n)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________